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We carry out a theoretical study on the isotropic-nematic phase transition and phase separation in amyloid
fibril solutions. Borrowing the thermodynamic model employed in the study of cylindrical micelles, we inves-
tigate the variations in the fibril length distribution and phase behavior with respect to changes in the protein
concentration, fibril’s rigidity, and binding energy. We then relate our theoretical findings to the nematic
ordering experimentally observed in Hen Lysozyme fibril solution.
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I. INTRODUCTION

Amyloids are insoluble fibrous protein aggregations stabi-
lized by a network of hydrogen bonds and hydrophobic in-
teractions �1–4�. They are intimately related to many neuro-
degenerative diseases such as the Alzheimer disease, the
Parkinson disease, and other prion diseases �5�. Furthermore,
it has recently emerged that nonpathogenic amyloid fibrils
possess great technological potential. In particular, amyloid
fibrils have been employed as nanowire templates �6,7�, were
shown to possess great tensile strength �8,9� and complex
phase behavior similar to liquid crystals �10–12�. Given
these extraordinary properties, it is highly desirable to inves-
tigate how one may exploit amyloid fibrils as functional ma-
terials. Here, we study theoretically the isotropic-nematic
phase transition in amyloid fibril solutions by combining the
physics of self-assembled linear structures, as studied in cy-
lindrical micelles �see �13,14� and the references therein�,
and the physics of the nematic ordering in charged rods
�15,16�. We then apply the formalism to a specific
example—Hen Lysozyme �HL� fibril solution, and discuss
agreement between theory and the experimental results in
�10�.

In the next section, we introduce a toy model for amyloid
fibrilization and review briefly the physics of nematic order-
ing in self-assembled rods. In Sec. III, we apply the theoret-
ical formalism to Hen Lysozyme amyloid fibrils and estimate
all of the model parameters from previous experimental stud-
ies. We then discuss the limitations of and predictions from
the model in Sec. IV.

II. MODEL

We assume that the monomers self-assemble into the
fibrillar form through two different interactions: �i� A-type
interactions of strength � which are directed longitudinally
along the fibrillar axis, and �ii� B-type interactions of
strength � which are lateral to the fibrillar axis. For amyloid
fibrils, the A-type interactions would correspond to the hy-
drogen bonds among the beta strands and hydrophobic inter-
actions between the side chains packed between the beta
sheets; and the B-type interactions would correspond to the

inter-cross-beta-sheet interactions �1� �cf. Fig. 1�. We further
assume that all fibrils are formed with the same number of
filaments, �, which is peptide specific and is constrained by
the chiral nature of the cross-beta sheets �17,18�.

Given N monomers in a volume V of solution, we denote
the fibrillar aggregate consisting of s monomers by Ns, i.e.,
�ssNs=N. We consider only the fibrillar species and ignore
the free energy contributions from monomers and oligomers
not in the fibrillar form. This assumption is satisfied if the
concentration is much higher than the critical fibrillar con-
centration �CFC� �so that the monomer concentration is neg-
ligible�, and if the CFC is lower than the critical concentra-
tions of other oligomeric species �19�. These conditions are
met if fibrils constitute the most dominant species in the
solution.

As each monomer is a peptide, there are intrinsic internal
degrees of freedom which contribute to the partition func-
tion. This is equivalent to the contribution of configurational
entropy for polymers. To simplify our theoretical treatment,
we will absorb these degrees of freedom intrinsic to each
monomer into � and represent the monomer as a spherical
particle. Since the free energy is defined up to addition of a
constant, we will also set the monomer-solvent interaction
energy to zero so that the free energy for free monomers
becomes purely entropic.

Without fibril-fibril interactions, the overall configura-
tional partition function can be written as �cf. Appendix A�,
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FIG. 1. �Color online� Schematics of a monomer and a fibril. �a�
The monomers interact with each other via two types of directional
interactions indicated by the blue �dark gray� arrows �A-type inter-
actions� and the red �shaded areas between the beads� patches
�B-type interactions� �see text�. �b� A fibril is formed by joining the
blue arrows and red patches. The directionality of the A-type inter-
actions renders the fibril rodlike, and the chiral nature of the beta
strands restricts the number of filaments, �, in a fibril �17�. In the
fibril depicted below, �=2.
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Ztot = �
s

� �Zs�Ns

Ns!
, �1�

where the prime in the product denotes the restriction that
�ssNs=N, and

Zs =
�s�u��s−1

�3s exp��s − ��� + s�� .

To ease notation, we define two new parameters,

� � � + � + ln�u�� + ln��−3�� , �2�

� � �� + ln�u�� . �3�

Namely, � amounts to the sum of the monomer binding en-
ergies through the A-type �first term� and B-type �second
term� interactions, plus the entropic contribution �the third
term� and the kinetic contribution �the fourth term�; and �
amounts to the total longitudinal binding energies of the
fibril, plus the entropic contribution.

According to Eq. �1�, the free energy density �FED�, in
the absence of fibril-fibril interactions, is expressed as

f0 =� dsn�s��ln n�s� − �s + � − 1� , �4�

where kBT is set to one and n�s��N�s� /V with the unit vol-
ume set to be the volume of one monomer. Under this con-
vention, n�s� is dimensionless and corresponds to the volume
fraction. Note that in Eq. �4�, we have gone from a discrete
description of the aggregation number to a continuous one.
This assumption is valid if the mean aggregation number is
large.

To incorporate the steric interactions between fibrils, we
employ the formalism developed in the study of cylindrical
micelles �14,20�. Specifically, we model the free energy con-
tribution of the fibril-fibril interactions as

f int =� dsds�n�s�n�s��B�s,s�� , �5�

where B�s ,s�� is the second virial coefficients of two rods of
aggregation numbers s and s�. Denoting the diameter of the
fibril by D and the length of a fibril with s monomers by
L�s�, we have �13�

B�s,s�� =
2	

3
D3 +

	2

2
D2�L�s� + L�s��� + DL�s�L�s��	sin 
	 ,

�6�

where 
 is the angle between the two rods. Since the mean
fibrillar length is much greater than D in our systems of
interest, we will ignore the first two terms in the second
virial coefficients. Also, as a fibril is a linear structure,

L�s� = �s , �7�

for some constant �. We shall from now on express the FED
in terms of �.

In the isotropic phase, the different directions of the rods
are averaged over and so f I is �13�

f I = f0 +
	D�2

4
� dsds�ss�n�s�n�s�� , �8�

In the nematic phase, the flexibility of the fibrils has to be
taken into account to avoid length explosion in the nematic
phase �13�. This can be done by incorporating the persistence
length of the fibril, denoted by P, into the model. The result-
ing FED for the nematic phase is �14�

fN = f0 +� dsn�s�
ln
P

4�
+

�s

4�
�

+ D�2��	

P
� dsds�ss�n�s�n�s�� , �9�

where � is the deflection length of the fibril �21�. In particu-
lar, � is related to the orientational order parameter, 
, in the
following manner �20�:


 
 �1 − 3�/P� . �10�

The length distribution that minimizes the above FEDs
can now be found by using the Lagrange multiplier method
�e.g., see �13,14��. For the isotropic phase, the distribution is

nI�s� = exp�− s/SI − �� , �11�

SI = �cIe
�, �12�

where cI is the protein volume fraction and SI corresponds to
the average aggregation number. Note that SI is above one
only if cI�e−�, this therefore indicates that the CFC of the
system is at e−� �19�.

For the nematic phase, the distribution is

nN�s� =
4��

P
exp�− s/SN − �� , �13�

SN =�PcNe�

4��
, �14�

where, similar to the isotropic case, cN is the protein volume
fraction and SN corresponds to the average aggregation num-
ber. In the above equations, �� is determined by minimizing
Eq. �9� with respect to �, and thus satisfies the following
equation:

−� cN

P��e� −
�cN

4��2 +
D�2

2
� 	

��P
cN

2 = 0. �15�

Due to the large magnitude of e� in the systems that we are
interested in �cf. Table I�, we will ignore the first term above
and approximate �� as

��3/2 =
1

2D�cN

�P

	
. �16�

Substituting Eqs. �11� and �13� into Eqs. �8� and �9�, the
minimal FEDs for the two phases are

f I = − ��SI
2 + 2SI�e−� +

	D�2cI
2

4
, �17�
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fN = −
4��

P

�� −

�

4���SN
2 + 2SN�e−� + D�2���	

P
cN

2 .

�18�

The FEDs above apply only to pure isotropic and nematic
phases. To investigate the coexistence of the two phases, we
denote by vI�vN� the proportion of isotropic �nematic� com-
ponent in the system. The total FED is therefore

f tot�cI,cN� = vIf I�cI� + vNfN�cN� , �19�

with the following conditions:

vIcI + vNcN = ctot, �20�

vI + vN = 1. �21�

As vI, vN can be expressed in terms of cI, cN,

vI =
cN − ctot

cN − cI
, vN =

ctot − cI

cN − cI
, �22�

the total FED of the system is dependent only on cI and cN.
The proportion of the isotropic/nematic component can now
be obtained by minimizing the total FED with respect to cI
and cN. This minimization problem does not admit an ana-
lytical expression and the graphical method described in �22�
is required �cf. Fig. 3�. It is therefore worthwhile putting in
experimentally relevant values into the model to reduce the
number of variables to be analyzed. This leads us to the next
section where the HL fibril solution is discussed. But before
we do so, we note that as far as the length distribution and
phase behavior are concerned, the energy strength, �, is ir-
relevant. This is because the terms involving � in the total
FED, i.e., the first terms in Eqs. �17� and �18�, amounts to

− vI�SI
2e−� − vN

4��

P
�SN

2 e−� = − �e−�, �23�

which is independent of cI or cN. One consequence of this
realization is that one will not be able to obtain a full picture
of the overall fibrilization energy, which includes the longi-
tudinal binding term, �, as well as the lateral binding term,
�, by studying the length distribution and the phase behavior
of the system alone.

III. HEN LYSOZYME AMYLOID FIBRILS

We will now apply our theoretical formalism to a specific
system—the HL fibril solution. HL is a protein consisting of
129 amino acids �AA� and amyloid fibrils are observed to
form when incubated at low pH and elevated temperatures
�10,23�. The width and persistence length of a HL fibril is
found to be 7.4 nm �10,23� and 10 �m �8�, respectively. To
complete the list of parameters involved in the model, we
need to estimate � �cf. Eq. �7�� and � �cf. Eq. �3��. Since the
structural details of the HL fibrils are still lacking, we will
estimate � by employing the approximation adopted in �8� in
the study of elastic properties of amyloid fibrils. Specifically,
each amino acid is assumed to occupy a volume of �1
�0.48�0.35�=0.17 nm3 within the fibril. This assumption
is motivated by the fact that a fibril constitutes mainly of
cross-beta-sheet structure �cf. Fig. 2�. Given that D
=7.4 nm �10�, the average length contribution to the fibril
per monomer can be estimated as follows:

� =
129 � 0.17 nm3

�D/2�2	
= 0.5 nm. �24�

In other words, each HL protein in the fibrils contributes on
average 0.5 nm to the fibril’s length.

When the solution is at pH 2 in the presence of 100 mM
NaCl, a HL protein carries a net positive charge of 19 �10�.
Hence, a HL fibril has an average line charge density, �, of
�19 /��=38 /nm. The electrostatic repulsion due to the fibrils’
charge density can be accounted for by defining an effective
diameter for the fibril, which is of the form �24�,

Deff = D
1 +
ln A + 0.577 + ln 2 − 1/2

�D
� , �25�

where

TABLE I. The various parameters involved in our model. The
daggers indicate values predicted in this work.

Properties Symbols Hen Lysozyme

No. of AA 129

Persistence length P 10 �m �8�
Diameter D 7.4 nm �10�
Effective diameter Deff 13 nm

Fibril length per monomer � 0.5 nm

Binding free energy � 20.6†

Lower conc. for phase sep. cA �0.65 mM �10�
Upper conc. for phase sep. cB 1.05 mM†

FIG. 2. �Color online� Four beta sheet strands are shown with
the fibrillar axis along the vertical direction. The hydrogen bonds
are schematically displayed by the rods connecting the two pairs of
beta sheets. On average, the amino acids within a beta strand are
about 0.35 nm apart. According to this structural model, each amino
acid occupies on average �1�0.35�0.48�=0.17 nm3 of space
within the fibril.
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�−1 =��0�kBT

2NAe2I

 1 nm, �26�

Q =
e2

4	�0�kBT

 0.68 nm, �27�

A =
	�2

2Q�e�D 
 114. �28�

In Eq. �28�, �
300, and is estimated by solving the Poisson-
Boltzmann equation for a charged cylinder in an ionic sol-
vent �cf. Appendix B�. Note that in the above equations, �0,
�, NA, e, I, �−1, and Q are the vacuum permittivity, the di-
electric permittivity of the solvent �taken to be 82 here�, the
Avogadro number, the elementary charge, the ionic strength
of the solvent in unit of mole /m3, the Debye screening
length, and the Bjerrum length, respectively �15,16�. Substi-
tuting the values in Eqs. �26� and �28� to Eq. �25�, Deff can be
calculated to be about 1.7�D
13 nm. We will employ this
effective diameter in our FEDs shown in Eqs. �17� and �18�.

To determine the only remaining parameter �, we will
make use of the knowledge that the lower concentration for
phase separation, cA, is measured to be around 0.6–0.7 mM
�10�. Here, we set cA to be 0.65 mM for definiteness. We then
vary � until cA obtained from the tangent method �illustrated
in Fig. 3� matches the assigned value of 0.65 mM. In doing
so, we find that �
20.6 and the upper concentration for
phase separation, cB, is about 1.05 mM. We have now com-
pletely specified all of the model parameters, and based on
these parameters, the variations of the various properties of
the HL fibril solution with respect to protein concentration is
shown in Fig. 4.

IV. DISCUSSION

Starting from a toy thermodynamic model, we have stud-
ied the isotropic-nematic phase transition in amyloid fibril
solution by combining previous models for �i� the nematic
ordering in self-assembled linear structures, �ii� the nematic
ordering in charged rods, and �iii� the elastic properties of
amyloid fibrils. We then focus on HL fibril solution and es-
timated all of the parameters involved from experimental
values. From the resulting parameter-free model, we deduced
two main predictions: �i� the upper concentration for phase
separation, cB, is 1.05 mM; and �ii� the average fibril length
varies with protein concentration in the way depicted in Fig.
4�c�. In particular, the average fibril length is predicted to be
1.21 �m at the protein concentration of 0.5 mM. The first
prediction on the upper concentration seems to be an under-
estimate of the upper concentration observed experimentally
in �10�. This may be an outcome of further aggregation of
fibrils. Indeed, it has been shown that amyloid fibril solutions
tend to form gel at high concentration �12,25�. Gelation in
fibril solutions points to possible attractive interactions be-
tween fibrils �26�, or contacts induced viscoelasticity �27�.
These effects are not captured in our FEDs, and may be the
source of the discrepancy. On the prediction concerning the
average fibril length, to the best of our knowledge, the aver-
age fibril length for HL fibrils has not been determined ac-
curately and so this prediction remained to be verified.

Besides protein concentration, salt concentration is also
demonstrated to have a major effect on the onset of nematic
ordering in �10�. Within our model, a decrease in ionic
strength would increase the Debye screening length �cf. Eq.
�26��, and hence also the effective diameter. This implies that
a decrease in ionic strength would decrease the onset con-
centration for nematic ordering, which is indeed observed
experimentally in �10�.
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APPENDIX A: THE PARTITION FUNCTION

The partition function for a fibril consisting of s mono-
mers is

Zs =
�s

�3ss!
�

�s

dx1 ¯ dxsdw1 ¯ dwse
−U��x,w��/kBT �A1�

where x�w� are the coordinates �directors� for the monomers,
U��x ,w�� is the potential function, and �s constrains the po-
sitions and directions of the monomers so that the aggrega-
tion is in the fibrillar form. Note that the prefactor corre-
sponds to the kinetic part of the partition function such that
�=h /�2	mkBT is the de Broglie thermal wavelength, and
�=��2	�5�kBT�3I1I2I3 /h3 with Ii being the three principle
moments of inertia �28�.

In the mean-field limit where all monomer contributions
to the partition function are assumed to be identical, the
above integral can be partitioned into four terms �28�,

�s

�3s

kinetics

� Vus−1

translation

� 4��s−1

rotation

� eEs

binding

.

�A2�

The first term corresponds to the kinetic contribution, the
second term to the translational entropic contribution with u
being the roaming volume of each monomer within the fibril,
the third term to the rotational entropic contribution with �
being the roaming area on a unit sphere for the director of
each monomer, and the fourth term to the binding energy,
which is of the form,

Es = �s − ��� + s� . �A3�

In the above equation, ���� is the binding energy corre-
sponding to the A-type �B-type� interactions �cf. Fig. 1�. Note
also that the term s! in the denominator in Eq. �A1� disap-
peared in Eq. �A2� due to the fact that there are s! different

ways of shuffling the monomers within the fibril.
For a system with fibrils of variable lengths, we need to

sum over all of the partition functions for the s-fibril, the
total partition function is therefore

Ztot = �
s

� �Zs�Ns

Ns!
, �A4�

where Ns is the number of s fibrils and the prime in the
product denotes the restriction that �ssNs=N.

APPENDIX B: ESTIMATION FOR �

The electrostatic potential � for a long, cylindrical and
charged rod in a solution with excess salt of ionic strength I
is described by �29�,

1

r

d

dr
�r

d�

dr
� =

8	NAIe2

�0�
sinh

e�

kBT
, �B1�

with the boundary conditions

�d�

dr
�

r=D
= −

4�

�0�D
, �B2�

lim
r→�

��r� = 0, �B3�

where r denotes the distance away from the center line of the
fibril. Note that we have assumed in Eq. �B2� that all of the
charges are spread at the outer boundary of the cylinder.

At a distance r far away from the rod ��r��D /2+1�,

e��r�
kBT


 �K0��r� , �B4�

where K0� . � is the modified Bessel function of the second
kind �29�. The prefactor � can therefore be obtained by solv-
ing the differential equation Eq. �B1� �29�.
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